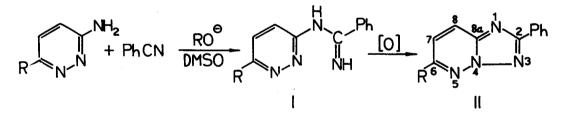
PYRIDAZINES. LIV. SYNTHESIS OF s-TRIAZOLO(2,3-b)PYRIDAZINES, A NOVEL HETEROCYCLIC SYSTEM


M. Zupan, B. Stanovnik and M. Tišler

Department of Chemistry, Univerity of Ljubljana

(Received in UK 21 August 1972; accepted for publication 7 September 1972)

There are seven possible isomeric triazolopyridazines, but so far representatives of five systems are known. ¹ We here give an account of the synthesis and some reactions of s-triazolo(2,3-b)pyridazines, a novel heteroaromatic bicyclic system.

3-Aminopyridazines, when condensed with phenyl cyanide in the presence of potassium tert-butoxide or sodium methoxide in dimethylsulfoxide afforded the corresponding amidines (I). 3-Amino-6-chloropyridazine reacted in the presence of sodium methoxide with si_multaneous displacement of the chlorine atom to give I (R = OMe). The amidines could be cyclized into II either with lead tetraacetate

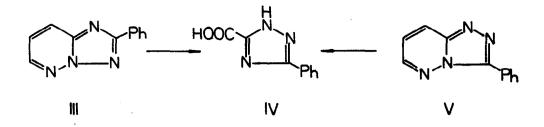
in methylene chloride or with bromine in a solution of potassium hydroxide. The products (II) were purified by thin-layer chromatography on silica (chloroform and methanol, 10:1, as solvent). The nmr data are presented in Table I and are in accord with the proposed structures.

Total and frontier π -electron densities for the parent system, calculated by the simple HMO method ² (Table II), predict a low reactivity towards electrophilic substitution and susceptibility for nucleophilic attack at positions 6 and/or

4179

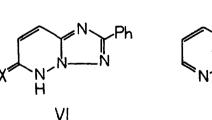
Table I

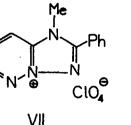
Compound	M.p.(⁰ C)	Nmr data (in DMSO-d ₆): τ (multiplicity, proton), J					
II, $R = H^{a}$	131-132	1.75 (dd, H_6), 3.05 (dd, H_7), 2.05 (dd, H_8), 2.70, 1.75 (m, C_6H_5); $J_{6,7} = 4.0$, $J_{6,8} = 1.5$, $J_{7.8} = 9.4 Hz$					
II, $R = Cl$	174-175	2.35 (d, H_7), 1.62 (d, H_8), 2.60, 1.90 (m, C_6H_5), J_7 , $g = 9.0 Hz$					
II, $R = OCH_3$	172-173	2.75 (d, H_7), 1.75 (d, H_8), 2.75, 1.80 (m, C_6H_5), 6.00 (s, OCH ₃); $J_{7,8} = 9.2$ Hz					
II, $R = NHNH_2$	199-200	3.00 (d, H_7), 2.10 (d, H_8), 2.55, 2.00 (m, C_6H_5), 5.6 (broad, NH); $J_{7,8} = 9.3 \text{ Hz}$					
II, $R = N_3$	210 - 214	2.76 (d, H_7), 1.67 (d, H_8), 2.55, 1.90 (m, C_6H_5); $J_{7,8} = 9.2 Hz$					
VI, X = 0	>330 (dec.)	at 111° : 2.90 (d, H ₇), 1.87 (d, H ₈), 2.55, 1.90 (m, C ₆ H ₅), 5.5 (broad, NH); J _{7,8} = 9.4 Hz					
VII	195-199	0.80 (dd, H_6), 1.75 (dd, H_7), 0.95 (dd, H_8), 2.30 (m, C_6H_5), 5.90 (s, CH_3); $J_{6,7} = 4.5$, $J_{6,8} = 1.5$, $J_{7,8} = 9.0$ Hz					
VIII	320-321	at 111 ⁰ : 2.43 (d, H_4), 2.75 (d, H_5), 2.60, 1.95 (m, C_6E_5), 3.5 (broad, NH); $J_{4.5} = 9.5$ Hz					

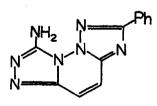

	1	2	3	4	5	6	7	8	8 a
A	1.3232	0.9376	1.2937	1.5245	1.1290	0.9522	0.9572	0.9551	0.9275
В	0.2375	0.0019	0.2637	0.0027	0.1923	0.0140	0.1377	0.1345	0.0158

A = Total

B = Frontier


8. In order to examine the reactivity of this system some reactions were performed.


When 2-phenyl-s-triazolo(2,3-b)pyridazine (III) was oxidized with aqueous potassium permanganate at 60° , 3-phenyl-1,2,4-triazole-5-carboxylic acid (IV) was isolated and identified. The same acid was obtained by oxidizing the isomeric 3-phenyl-s-triazolo(4,3-b)pyridazine (V). As anticipated, the chlorine atom in



II (R = Cl) could be displaced with nucleophiles and the corresponding ethoxy (II, R = OEt), oxo (VI, X = O) or hydrazino (II, R = NHNH₂) derivatives were obtained. Since a direct nucleophilic displacement of the chlorine atom with sodium azide failed, the azido compound (II, R = N₃) could be prepared by nitrosation of the hydrazino derivative. In solid state, the compound exists in the azido form as evidenced from a strong azido absorption band at 2128 cm⁻¹which parallels the observations made in the case of a 6-azido group in imidazo(1,2-b)pyridazines, ³ s-triazolo(4,3-b)pyridazines, ^{3,4} and tetrazolo(1,5-b)pyridazines. ^{4,5} Also in a solution of dimethylsulfoxide only one form is present. Reduction of the azido compound with hydrogen sulfide in hot ethanolic solution gave the corresponding 6-amino derivative (II, R = NH₂, m.p. 195-196⁰). In the Staudinger reaction, ⁶ typical for most covalent azides, the azido compound reacted with triphenyl phosphine in chloroform to give the corresponding iminophosphorane (II, R = Ph₂P=N, m.p. 243-246⁰).

When heated with dimethyl sulfate, 2-phenyl-s-triazolo(2,3-b) pyridazine was transformed into its 1-methyl quaternary compound (VII), isolated in the form of the perchlorate salt. The chloro analog (II, R = Cl) reacted with malonodinitrile in the presence of potassium hydroxide in dimethylsulfoxide to give the corresponding dicyanomethylene derivative [VI, X = C(CN)₂; m.p. 235-240[°], ir: 2183 and 2151 (CN), 3401 cm⁻¹ (NH)]. Finally, a derivative of s-triazolo(2,3-b)-s-triazolo(3,4-f)pyridazine (VIII) could be prepared in a reaction between the hydrazino compound (II, R = NHNH₂) and cyanogen bromide at room temperature.

VIII

In all of these transformations it appears that the novel bicyclic system possesses similar reactivity the isomeric s-triazolo(4,3-b)pyridazine and other related heteroaromatic azoloazines.

References

- 1. Compounds, pertaining to the following systems are known: s-triazolo(4,3-b)-, s-triazolo(1,2-a)-, v-triazolo(4,5-d)-, v-triazolo(4,5-c)- and v-triazolo(1,5--b)pyridazine.
- 2. Parameters for LCAO calculations were taken from A. Streitwieser "Molecular Orbital Theory for Organic Chemists", J. Wiley, New York, 1961, p.135.
- 3. B. Stanovnik, M. Tišler, M. Ceglar and V. Bah, J. Org. Chem., 35, 1138(1970).
- 4. A. Kovačič, B. Stanovnik and M. Tišler, J. Heterocycl. Chem., 5, 351 (1968).
- 5. B. Stanovnik and M. Tišler, Tetrahedron, 25, 3313 (1969).
- 6. H. Staudinger and J. Meyer, Helv. Chim. Acta, 2, 635 (1919).